
Cue Specs
Release

OpenStack Cue Team

August 26, 2015

Contents

1 What is Cue? 3

2 Why Cue? 5

3 Getting Started 7
3.1 Development Environment with Vagrant . 7

4 Getting Involved 9
4.1 #openstack-cue . 9
4.2 Weekly meetings . 9
4.3 Contributing . 9
4.4 Coding Standards . 10

5 Installation Guide 11
5.1 Installing Cue on Ubuntu . 11
5.2 Recommended Deployment . 16
5.3 Dashboard . 18

6 Configuration Options 19
6.1 [DEFAULT] . 19
6.2 [database] . 19
6.3 [api] . 19
6.4 [taskflow] . 20
6.5 [openstack] . 20
6.6 [keystone_authtoken] . 20

7 Developer Guide 21
7.1 Cue Dev Guide - Overview . 21
7.2 DevStack . 21
7.3 Development Environment with Vagrant . 23

8 REST API Documentation 25
8.1 V1 API . 25

9 Indices and tables 31

HTTP Routing Table 33

i

ii

Cue Specs, Release

Cue provides Message Broker provisioning services for OpenStack:

• API management for message brokers - provides properly configured message brokers on demand

• Support for RabbitMQ today, Kafka POC coming soon

• Plug-in model for open source and proprietary brokers

• Focused on lifecycle actions such as rolling patches/upgrades, scale out/in, monitoring, clustering, and self-
healing

Contents 1

Cue Specs, Release

2 Contents

CHAPTER 1

What is Cue?

Cue is a message broker provisioning service for Openstack. Its goal is to simplify and automate the complex tasks of
provisioning, management, and administration of message brokers. Cue is designed to provide API, CLI, and UI based
management of open source brokers such as RabbitMQ and Kafka. Because it’s designed to be pluggable, proprietary
message brokers can also be delivered as a service through Cue. The service will provide resource isolation at the VM
level, and does not attempt to implement multi-tenancy at the message broker layer.

There are two personas to keep in mind when thinking about Cue. One is the Cloud Operator. The Cloud Operator
installs and operates Cue, alongside the rest of OpenStack. This person cares about Cue installation and upgrades,
along with broker level availability and versioning capabilities. The second persona is the application developer. This
person provisions message broker clusters from the Cue API, CLI, or Horizon console. Alternatively, the application
developer consumes Cue through a Platform as a Service product such as Cloud Foundry. In this scenario there is
already a Cue provisioned cluster and the developer simply specifies that a queue of a certain name is needed in the
application’s manifest file. At deploy time, the queue is created directly on the message broker itself using a Cloud
Foundry service broker.

3

Cue Specs, Release

4 Chapter 1. What is Cue?

CHAPTER 2

Why Cue?

Messaging is a common development pattern for building loosely coupled distributed systems. Messaging systems
act as glue between independent applications. Dozens of off-the-shelf products exist that implement messaging and
queuing semantics, many of which implement open protocols such as AMQP 0.9 and 1.0.

There is a significant operational burden associated with the lifecycle management of message brokers in an enterprise.
Not to mention the time associated with ensuring the broker is deployed in a cloud native pattern, assuming failure of
underlying infrastructure. Cue aims to simplify the provisioning and management of messaging systems, providing
high availability and auto-healing capabilities for both the cloud operator and end user, while providing secure tenant-
level isolation.

The main goal of this service is to simplify the end user application development lifecycle for both legacy and “cloud
native” applications, allowing the developer to focus on their application, instead of the underlying middleware ser-
vices.

5

Cue Specs, Release

6 Chapter 2. Why Cue?

CHAPTER 3

Getting Started

3.1 Development Environment with Vagrant

Cue is comprised of three main components cue-api, cue-worker and cue-manage. The Cue project includes a Va-
grant configuration which deploys the Cue service and related scenario tests as part of a DevStack installation. This
configuration allows new developers to get up and running quickly and efficiently.

This guide will walk you through setting up a Vagrant VM with devstack and Cue installed.

3.1.1 Development Environment

The Vagrant configuration allows the deployment of Cue service into DevStack. This environment provides a devel-
oper with a quick and easy way to run Cue with latest changes locally, run integration and scenario tests.

Deploying Cue Through Vagrant

1. Clone the Cue repo from GitHub

$ git clone https://github.com/openstack/cue.git

2. Startup Vagrant VM

$ cd cue/contrib/vagrant
$ vagrant up ubuntu

3. SSH into Vagrant VM

$ vagrant ssh ubuntu

4. Install Devstack

$ cd devstack
$./stack.sh

You are now in the Vagrant VM with DevStack installed/configured with Cue API, and Cue Worker.

Unit and Functional Testing

Unit are located in: cue/cue/tests/unit

Functional tests are located in: cue/cue/tests/functional

7

Cue Specs, Release

To run all unit and function tests, execute ‘tox’ from Cue project folder:

$ cd cue
$ tox

Integration Tests

Integration tests verify Cue through calling the REST API directly. These tests make use of the Tempest framework
and are located in: cue/tests/integration

To run all integration tests, ssh into the Vagrant VM with DevStack/Cue installation (above) and run the following
script:

$./cue/tests/integration/run_tests.sh

Scenario Tests

Scenario tests verify Cue through the Python Cue Client. These tests make use of Rally Benchmark framework and
are located in: cue/rally-jobs

To run all scenario tests, ssh into the Vagrant VM with DevStack/Cue installation (above) and run the following script:

$ rally task start --task ~/cue/rally-jobs/rabbitmq-scenarios.yaml

8 Chapter 3. Getting Started

CHAPTER 4

Getting Involved

4.1 #openstack-cue

There is an active IRC channel at irc://freenode.net/#openstack-cue, where many of the cue contributors can be found,
as well as users from various organisations.

4.2 Weekly meetings

There is a weekly irc meet. The agenda, date/time and other details are listed at Cue meetings wiki page.

4.3 Contributing

We welcome fixes, extensions, documentation, pretty much anything that helps improve Cue, contributing is easy &
follows the standard OpenStack Gerrit workflow, if you’re looking for something to do, you could always checkout
the blueprint & bug lists.

Assuming you’ve already got a working Development Environment, here’s a quick summary:

Install the git-review package to make life easier

pip install git-review

Branch, work, & submit:

cut a new branch, tracking master
git checkout --track -b bug/id origin/master
work work work
git add stuff
git commit
rebase/squash to a single commit before submitting
git rebase -i
submit
git-review

9

https://wiki.openstack.org/wiki/Meetings/Cue
http://docs.openstack.org/infra/manual/developers.html#development-workflow
https://blueprints.launchpad.net/cue
https://bugs.launchpad.net/cue

Cue Specs, Release

4.4 Coding Standards

Cue uses the OpenStack flake8 coding standards guidelines. These are stricter than pep8, and are run by gerrit on
every commit.

You can use tox to check your code locally by running

For just flake8 tests
tox -e flake8
For tests + flake8
tox

10 Chapter 4. Getting Involved

CHAPTER 5

Installation Guide

5.1 Installing Cue on Ubuntu

This install guide provides details on how to install on a Ubuntu based image with the necessary dependencies and
required configuration.

5.1.1 Architecture

Installation of Cue requires four (2) primary Cue components, two (2) components that are external dependencies for
Cue, and three (3) optional components.

Required Cue Components

• Cue API

• Cue Worker

Required Dependencies

• MySQL

• Zookeeper

Optional Components

• Cue Command-line Client (python-cueclient)

• Cue Dashboard (cue-dashboard)

• Openstack Client (python-openstackclient)

Additional Setup

Additional setup beyond installing Cue services is required in Keystone to allow authentication of user credentials
against Keystone. Also the Keystone service catalog must be updated to include Cue’s service endpoints.

11

Cue Specs, Release

5.1.2 Prerequisites

Install

$ sudo apt-get install zookeeper zookeeperd python-mysqldb

MySQL

Note: The following commands should be done using the mysql command line or similar.

Create the MySQL user

$ GRANT ALL ON cue.* TO 'cue'@'localhost' IDENTIFIED BY 'cue'

Create the database

$ CREATE DATABASE cue

5.1.3 Installing using Source (Git)

1. Install pre-requisites:

$ sudo apt-get install git python-dev python-pip
$ sudo apt-get build-dep python-lxml

2. Clone the repository:

$ git clone git://github.com/openstack/cue cue

3. Change directory to the newly cloned repository

$ cd cue

4. Install all dependencies using pip

$ sudo pip install -r requirements.txt
$ sudo pip install MySQL-python

5. Install Cue:

$ sudo python setup.py develop

6. Copy over configuration files

$ sudo cp -R etc/cue /etc/
$ ls /etc/cue/*.sample | while read f; do sudo cp $f $(echo $f | sed "s/.sample$//g"); done

Create directories

Since we are not running packages some directories are not created for us.

$ sudo mkdir /var/lib/cue /var/log/cue
Needed if you are running cue as a non root user.
$ sudo chown cue_user /var/lib/cue /var/log/cue

12 Chapter 5. Installation Guide

Cue Specs, Release

5.1.4 Configuring

Register Cue with Keystone

1. Create new user for cue service

keystone user-create --name cue --tenant <tenant_uuid> --pass <password

2. Add admin role for cue_admin user

keystone user-role-add --user cue_admin --tenant cue_admin_service --role=admin

Add Cue Service Endpoint to Keystone

1. Add cue service to keystone

keystone service-create --type message_broker --name cue --description "Message Broker provisioning service"

2. Create a new endpoint for the cue service in keystone

keystone endpoint-create --region RegionOne --service <cue_service_uuid> --publicurl http://<cue_api_ip>:8795/ --adminurl http://<cue_api_ip>:8795/ --internalurl http://<cue_api_ip>:8795/

Create Message Broker Image

The Cue service makes use of custom Ubuntu images with required messaging broker (e.g. RabbitMQ) installed.
Building images uses the Tripleo diskimage-builder tools. Image elements for the RabbitMQ image are found in
cue/contrib/image-elements/, you will also find the ‘image-build-rabbitmq.sh’ script which will build a custom image
compatible with Cue.

The images are based on the latest base Ubuntu cloud image with the following elements:

• os-apply-config

• os-refresh-config

• ntp

• hosts

• cue-rabbitmq-base (cue/contrib/image-elements/cue-rabbit-base)

• ifmetric (cue/contrib/image-elements/ifmetric)

Note: building images will require a machine with more than 4GB of memory.

Once the image is built, it must be uploaded to Glance (disk format is qcow2) and message broker details added to
Cue database through cue-management.

1. Create new Message Broker and set it as active broker

$ cue-manage --config-file etc/cue/cue.conf broker add <name> true

2. Add metadata indicating image id (created above) for new Message Broker

$ cue-manage --config-file etc/cue/cue.conf broker add_metadata <broker-uuid> --image <image-uuid>

5.1. Installing Cue on Ubuntu 13

Cue Specs, Release

Cue Config

$ sudo editor /etc/cue/cue.conf

Copy or mirror the configuration from this sample file here:

[DEFAULT]
management_network_id = <uuid>
os_security_group = <uuid>
policy_file = /etc/cue/policy.json
Show more verbose log output (sets INFO log level output)
verbose = True
Show debugging output in logs (sets DEBUG log level output)
debug = True
Log levels for Zookeeper client and Stevedore
default_log_levels = kazoo.client=INFO,stevedore=INFO

[database]
Database connection string - to configure options for a given implementation
connection = mysql://<user>:<password>@<ip-address>/cue

[api]
Cue REST API specific configuration
api_port = 8795
api_host = <rest-api-ip-address>
auth_strategy = keystone

[taskflow]
Zookeeper host node
zk_hosts=<zookeeper-ip-address>

[openstack]
Credentials used by Cue to access OpenStack services
os_password = <password>
os_username = <username>
os_auth_url = http://192.168.131.199:35357/v3
os_auth_version = 3
os_project_name = <project-name>
os_project_domain_name = <project-domain-name>
os_user_domain_name = <user-domain-name>

[keystone_authtoken]
Credentials used by Cue for KeyStone authentication
auth_url = http://<keystone-ip-address>:35357
auth_plugin = <auth-password>
project_name = service
password = <password>
username = <username>

More details on configuration values:

Configuration Options

14 Chapter 5. Installation Guide

Cue Specs, Release

[DEFAULT]

Parameter Default Note
management_network_id None The id representing the management network
os_security_group None The default Security to access clustered VMs
default_broker_name rabbitmq The name of the default broker image
rabbit_port 5672 RabbitMQ AMQP port on clustered VMs
policy_file /etc/cue/policy.json JSON file representing policy
verbose false Print more verbose output
debug false Print debugging output
state-path /var/lib/cue Top-level directory for maintaining cue’s state

[database] Parameter Default Note
connection None The SQLAlchemy connection string to database

[api]

Parameter Default Note
host_ip 0.0.0.0 The listen IP for the Cue API server
port 8795 The port for the Cue API server
max_limit 1000 The maximum number of items returned in a single response
max_cluster_size 10 Maximum number of nodes in a cluster
auth_strategy keystone Method to use for authentication: noauth or keystone
pecan_debug False Pecan HTML Debug Interface

[taskflow]

Parameter Default Note
persistence_connection None Persistence connection
zk_hosts localhost Zookeeper jobboard hosts
zk_path /cue/taskflow Zookeeper path for jobs
zk_timeout 10 Zookeeper operations timeout
jobboard_name ‘cue’ Board name
engine_type ‘serial’ Engine type
cluster_node_check_timeout 10 Number of seconds between node status checks
cluster_node_check_max_count 30 Number of times to check a node for status

[openstack]

Parameter Default Note
os_region_name None Region name
os_username None Openstack Username
os_password None Openstack Password
os_auth_url None Openstack Authentication (Identity) URL
os_auth_version None Openstack Authentication (Identity) Version
os_project_name None Openstack Project Name
os_project_domain_name None Openstack Project Domain Name
os_user_domain_name None Openstack User Domain Name
os_key_name None SSH key to be provisioned to cue VMs
os_availability_zone None Default availability zone to provision cue VMs

[keystone_authtoken]

Parameter Default Note
auth_url None The URL to Keystone Identity Service
auth_plugin None Name of the plugin to load
project_name None Project name accessing Keystone (usually ‘service’)
username None Username for accessing Keystone
password None password for accessing keystone

5.1. Installing Cue on Ubuntu 15

Cue Specs, Release

Sync Database schemas

Initialize database schema for Cue

$ cue-manage --config-file /etc/cue/cue.conf database upgrade

Notes:

• magement_network_id must be different than provided user network id through API.

5.1.5 Starting the services

Worker

$ cue-worker --config-file /etc/cue/cue.conf

API

The API can be started as is (through shell) or can be started behind Apache. Starting the API behind Apache is the
recommended method for running the API (section below).

Starting with command shell:

$ cue-api --config-file /etc/cue/cue.conf

5.1.6 Running Cue API behind Apache2

Note: In this howto we explain how to setup cue-api to run behind a Apache2 instance vs as a process of it’s own.

We will assume that cue is available under /opt/stack/cue as it is in devstack.

Symlink app.wsgi to /var/www

$ sudo mkdir /var/www/cue
$ sudo ln -s /opt/stack/cue/cue/api/app.wsgi /var/www/cue

Setup Apache2 config

$ sudo cp /opt/cue/etc/apache2/cue.conf /etc/apache2/sites-available
$ sudo a2ensite cue
$ sudo service apache2 reload

You should now have cue-api running under Apache2!

5.2 Recommended Deployment

5.2.1 Overview

Cue currently does not support creation of broker VMs in user tenants. This is to ensure the overall security of Cue in
a multi-tenant environment as well as to prevent direct modification of Broker VMs by tenants. Cue is a full life cycle
management solution for Message Brokers, therefore it requires final control over the Broker VMs.

16 Chapter 5. Installation Guide

Cue Specs, Release

Cue can be installed in a very flat network with all components and interfaces existing in a single network plane.
However, for the sake of security and isolation, it is recommended that separate networks and firewall domains/zones
be created. Below is a diagram showing the currently recommended deployment model.

Networks

• API Network - This is the network that the Cue API will expose its API endpoint to. This network will need to
be routable/reachable by all Cue users and will likely need to be a “public” network.

• Cue Control Plane Network - This is the network that all Cue Control Plane components (API, MySQL,
Zookeeper, Worker) will use to communicate with each other. It is recommended this network be isolated
from all other traffic. This network can optionally be connected to a “service” network that provides access to
shared services like monitoring.

• Management Network - This is the network that the Cue Worker and all Broker VMs attach to. The Cue Worker
connects to Broker VMs through the management network to monitor and control each Broker VM.

• Tenant Network - The tenant network is not a single network, it is any network that the Cue user specifies. Cue
creates and attaches a port from the tenant network to the Broker VM in order to provide access to Message
Broker services.

• External/Services Network - This is a network that the Cue Control Plane might optionally be attached to. This
network, if attached to the Cue Control Plane, should be isolated from Tenant/User traffic in order to prevent
possible attacks to the Cue Control Plane.

Security Groups

All security groups should have a default deny policy and allow only the specific ports as specified below:

• API - The API listens on the Cue service port (8795 by default) and must allow incoming requests to this port
from the API network.

• Control Plane - The Cue API and Cue Worker access MySQL and Zookeeper for persisting data and coordina-
tion. It is highly recommended that MySQL and Zookeeper both be clustered, which requires that respective
clustering ports be opened to members of each respective cluster. If the firewall is implemented with Security
Groups, a group rule can be used to allow access to all members of the control plane, or explicit rules can be
used to limit access to specific ports.

• Message Broker Internal - There exists a unique “Message Broker Internal” security domain/zone for each
Message Broker type that is supported by Cue. The Message Broker VM must allow access from Cue Worker
in order to allow Cue to manage the Message Broker VM. Depending on the Message Broker, it will also need
to allow cluster traffic between the Message Broker VMs to facilitate clustering.

• Message Broker Public - There exists a unique “Message Broker Public” security domain/zone for each Message
Broker type that is supported by Cue. The Message Broker VM must allow access to the public endpoints for
the Message Broker service it is providing.

Cue Tenant and Users

Cue requires its own Tenant, which is used to create all Broker VMs.

Cue uses two logically separate users to interact with Openstack:

• Cue Service User

• Cue Tenant User

5.2. Recommended Deployment 17

Cue Specs, Release

Cue Service User is used by Cue API to communicate with Keystone for authenticating user tokens. The Cue Service
User must have an appropriate Keystone role to be able to authenticate Keystone auth tokens.

Cue Tenant User is used by Cue Worker to communicate with Openstack services like nova, neutron, and cinder, to
create and manage Broker VMs. The Cue Tenant User must have appropriate access to the Cue Tenant for creating
VMs. The Cue Tenant User must also have an appropriate neutron role to be able to create ports on networks not
owned by the Cue Tenant.

It is also recommended that the Cue Tenant User has appropriate quotas set for Nova, Cinder, and Neutron. These
settings reflect the capacity available to Cue for provisioning Broker Clusters.

5.3 Dashboard

Cue provides a Horizon Dashboard plugin. The plugin can be found at the cue-dashboard repo with accompanying
installation instructions.

18 Chapter 5. Installation Guide

https://github.com/openstack/cue-dashboard

CHAPTER 6

Configuration Options

6.1 [DEFAULT]

Parameter Default Note
management_network_id None The id representing the management network
os_security_group None The default Security to access clustered VMs
default_broker_name rabbitmq The name of the default broker image
rabbit_port 5672 RabbitMQ AMQP port on clustered VMs
policy_file /etc/cue/policy.json JSON file representing policy
verbose false Print more verbose output
debug false Print debugging output
state-path /var/lib/cue Top-level directory for maintaining cue’s state

6.2 [database]

Parameter Default Note
connection None The SQLAlchemy connection string to database

6.3 [api]

Parameter Default Note
host_ip 0.0.0.0 The listen IP for the Cue API server
port 8795 The port for the Cue API server
max_limit 1000 The maximum number of items returned in a single response
max_cluster_size 10 Maximum number of nodes in a cluster
auth_strategy keystone Method to use for authentication: noauth or keystone
pecan_debug False Pecan HTML Debug Interface

19

Cue Specs, Release

6.4 [taskflow]

Parameter Default Note
persistence_connection None Persistence connection
zk_hosts localhost Zookeeper jobboard hosts
zk_path /cue/taskflow Zookeeper path for jobs
zk_timeout 10 Zookeeper operations timeout
jobboard_name ‘cue’ Board name
engine_type ‘serial’ Engine type
cluster_node_check_timeout 10 Number of seconds between node status checks
cluster_node_check_max_count 30 Number of times to check a node for status

6.5 [openstack]

Parameter Default Note
os_region_name None Region name
os_username None Openstack Username
os_password None Openstack Password
os_auth_url None Openstack Authentication (Identity) URL
os_auth_version None Openstack Authentication (Identity) Version
os_project_name None Openstack Project Name
os_project_domain_name None Openstack Project Domain Name
os_user_domain_name None Openstack User Domain Name
os_key_name None SSH key to be provisioned to cue VMs
os_availability_zone None Default availability zone to provision cue VMs

6.6 [keystone_authtoken]

Parameter Default Note
auth_url None The URL to Keystone Identity Service
auth_plugin None Name of the plugin to load
project_name None Project name accessing Keystone (usually ‘service’)
username None Username for accessing Keystone
password None password for accessing keystone

20 Chapter 6. Configuration Options

CHAPTER 7

Developer Guide

7.1 Cue Dev Guide - Overview

7.1.1 Summary

The developer guide provides details on how to get Cue up and running quickly. This guide is divided into two parts;
the first describes how to install DevStack with Cue. The second part describes how to use of the Vagrant configuration
found in project Cue.

DevStack with Cue:

• experiment with the Cue service

Vagrant VM with DevStack and Cue:

• used as part of a development environment

• allows user to quickly verify changes

• run integration and scenario tests

7.2 DevStack

Instructions on how to install Cue as part of a DevStack deployment.

7.2.1 Instructions

1. Get a clean Ubuntu 14.04 VM. DevStack “takes over”. Don’t use your desktop! Note: Ensure VM has at
least 8GB of Memory.

2. Clone Cue and DevStack inside the VM:

$ git clone https://git.openstack.org/openstack-dev/devstack
$ git clone https://github.com/openstack/cue.git

3. Install the Cue extension for DevStack:

$ cd cue/contrib/devstack
$./install.sh

4. Copy local.conf and local.sh from cue/contrib/devstack:

21

Cue Specs, Release

$ cp local.* ../../../devstack/

5. Run DevStack:

$ cd ../../../devstack
$./stack.sh

6. Enter the screen sessions “shell” window:

$./rejoin-stack.sh

Then press Ctrl+A followed by d to exit

7. Load desired credentials into the shell:

$ source openrc admin admin # For the admin user, admin tenant
$ source openrc admin demo # For the admin user, demo tenant
$ source openrc demo demo # For the demo user, demo tenant

8. Try out the cue client:

$ openstack message-broker cluster create --name cluster_01 --nic d5c35f43-4e8e-4264-9c8a-21c2f0a358e8 --flavor 8795 --size 1
+------------+---+
| Field | Value |
+------------+---+
created_at	2015-06-02T21:29:15+00:00
endpoints	[]
flavor	8795
id	b7ed9907-2d37-41e6-b70c-22eb1ea44777
name	cluster_01
network_id	[u'd5c35f43-4e8e-4264-9c8a-21c2f0a358e8']
size	1
status	BUILDING
+------------+---+

$ openstack message-broker cluster list
+--------------------------------------+------------+----------+------------+
| id | name | status | endpoints |
+--------------------------------------+------------+----------+------------+
| b7ed9907-2d37-41e6-b70c-22eb1ea44777 | cluster_01 | BUILDING | [] |
+--------------------------------------+------------+----------+------------+

$ openstack message-broker cluster show b7ed9907-2d37-41e6-b70c-22eb1ea44777
+------------+--+
| Field | Value |
+------------+--+
created_at	2015-06-02T21:29:15+00:00
endpoints	[{u'type': u'AMQP', u'uri': u'10.0.0.5:5672'}]
flavor	8795
id	b7ed9907-2d37-41e6-b70c-22eb1ea44777
name	cluster_01
network_id	[u'd5c35f43-4e8e-4264-9c8a-21c2f0a358e8']
size	1
status	ACTIVE
updated_at	2015-06-02T21:29:18+00:00
+------------+--+

22 Chapter 7. Developer Guide

Cue Specs, Release

7.3 Development Environment with Vagrant

Cue is comprised of three main components cue-api, cue-worker and cue-manage. The Cue project includes a Va-
grant configuration which deploys the Cue service and related scenario tests as part of a DevStack installation. This
configuration allows new developers to get up and running quickly and efficiently.

This guide will walk you through setting up a Vagrant VM with devstack and Cue installed.

7.3.1 Development Environment

The Vagrant configuration allows the deployment of Cue service into DevStack. This environment provides a devel-
oper with a quick and easy way to run Cue with latest changes locally, run integration and scenario tests.

Deploying Cue Through Vagrant

1. Clone the Cue repo from GitHub

$ git clone https://github.com/openstack/cue.git

2. Startup Vagrant VM

$ cd cue/contrib/vagrant
$ vagrant up ubuntu

3. SSH into Vagrant VM

$ vagrant ssh ubuntu

4. Install Devstack

$ cd devstack
$./stack.sh

You are now in the Vagrant VM with DevStack installed/configured with Cue API, and Cue Worker.

Unit and Functional Testing

Unit are located in: cue/cue/tests/unit

Functional tests are located in: cue/cue/tests/functional

To run all unit and function tests, execute ‘tox’ from Cue project folder:

$ cd cue
$ tox

Integration Tests

Integration tests verify Cue through calling the REST API directly. These tests make use of the Tempest framework
and are located in: cue/tests/integration

To run all integration tests, ssh into the Vagrant VM with DevStack/Cue installation (above) and run the following
script:

7.3. Development Environment with Vagrant 23

Cue Specs, Release

$./cue/tests/integration/run_tests.sh

Scenario Tests

Scenario tests verify Cue through the Python Cue Client. These tests make use of Rally Benchmark framework and
are located in: cue/rally-jobs

To run all scenario tests, ssh into the Vagrant VM with DevStack/Cue installation (above) and run the following script:

$ rally task start --task ~/cue/rally-jobs/rabbitmq-scenarios.yaml

24 Chapter 7. Developer Guide

CHAPTER 8

REST API Documentation

The Cue API has currently one version versions - V1.

8.1 V1 API

8.1.1 Clusters

A Cluster is a representation of a collection of message broker nodes with respective endpoints (e.g.
RabbitMQ Cluster). Create Cluster

POST /clusters
Create a new Cluster.

Example request:

POST /clusters HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json

{
"name": "Example Cluster",
"size": 3,
"flavor": "101",
"volume_size": "1048576"
"network_id": [

"ea540512-4d4a-4c46-9ebd-4fafe4a54a2d"
]
"auth_credential": {

"type": "PLAIN",
"token": {

"username": "rabbit_user"
"password": "super_secret_password"

}
}

}

Example response:

HTTP/1.1 201 Created
Location: http://127.0.0.1:8795/v1/clusters/2c3c66ba-721b-4443-bc81-55d986848c68

25

Cue Specs, Release

Content-Type: application/json; charset=UTF-8

{
"status": "BUILDING",
"name": "Example Cluster",
"network_id": [

"ea540512-4d4a-4c46-9ebd-4fafe4a54a2d"
],
"created_at": "2015-06-03T21:49:49+00:00",
"volume_size": 1048576,
"endpoints": [],
"flavor": "101",
"id": "2c3c66ba-721b-4443-bc81-55d986848c68",
"size": 3

}

Form Parameters

• status – status of the cluster

• name – name of the cluster

• network_id – a list of UUID of network id’s

• created_at – create cluster request received timestamp

• volume_size – volume size used for each node

• endpoints – list of endpoints for each node

• flavor – node flavor

• id – the UUID of the cluster

• size – size of the cluster

• auth_credential – Authentication credentials

Status Codes

• 201 Created – Created

• 400 Bad Request – Bad Request

• 401 Unauthorized – Access Denied

Get Cluster

GET /clusters/(uuid: id)
Get a specific Cluster using the Cluster’s uuid id.

Example request:

GET /clusters/2c3c66ba-721b-4443-bc81-55d986848c68 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

26 Chapter 8. REST API Documentation

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Cue Specs, Release

{
"status": "ACTIVE",
"name": "Example Cluster",
"network_id": [

"c6958944-7ef0-4929-9625-7f924bb2610c"
],
"created_at": "2015-06-03T22:44:17+00:00",
"updated_at": "2015-06-03T22:47:15+00:00",
"volume_size": 1048576,
"endpoints": [

{
"type": "AMQP",
"uri": "10.0.0.9:5672"

},
{

"type": "AMQP",
"uri": "10.0.0.11:5672"

},
{

"type": "AMQP",
"uri": "10.0.0.10:5672"

}
],
"flavor": "8795",
"id": "2c3c66ba-721b-4443-bc81-55d986848c68",
"size": 3

}

Form Parameters

• updated_at – cluster last updated at timestamp

Status Codes

• 200 OK – OK

• 400 Bad Request – Bad Request

List Clusters

GET /clusters
Lists all clusters

Example request:

GET /servers HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
"status": "ACTIVE",
"name": "Example Cluster",
"network_id": [

8.1. V1 API 27

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Cue Specs, Release

"c6958944-7ef0-4929-9625-7f924bb2610c"
],
"created_at": "2015-06-03T22:44:17+00:00",
"updated_at": "2015-06-04T00:31:16+00:00",
"volume_size": 1048576,
"endpoints": [

{
"type": "AMQP",
"uri": "10.0.0.9:5672"

},
{

"type": "AMQP",
"uri": "10.0.0.11:5672"

},
{

"type": "AMQP",
"uri": "10.0.0.10:5672"

}
],
"flavor": "8795",
"id": "2c3c66ba-721b-4443-bc81-55d986848c68",
"size": 3

},
{

"status": "DELETED",
"name": "cluster_01",
"network_id": [

"ba013641-8b54-40a5-801d-a7839690e272"
],
"created_at": "2015-05-13T21:23:15+00:00",
"updated_at": "2015-05-13T21:30:15+00:00",
"endpoints": [

{
"type": "AMQP",
"uri": "10.0.0.7:5672"

}
],
"flavor": "8795",
"id": "85a63cac-9bf7-4ef7-962d-dd51bde0b29b",
"size": 1

},

Status Codes

• 200 OK – Success

• 401 Unauthorized – Access Denied

Delete Cluster

DELETE /clusters/(uuid: id)
Delete a cluster.

Example request:

DELETE /clusters HTTP/1.1
Accept: application/json

28 Chapter 8. REST API Documentation

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Cue Specs, Release

Example response:

HTTP/1.1 202 Accepted

Status Codes

• 400 Bad Request – Bad Request

• 204 No Content – Successfully Deleted

8.1. V1 API 29

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Cue Specs, Release

30 Chapter 8. REST API Documentation

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

31

Cue Specs, Release

32 Chapter 9. Indices and tables

HTTP Routing Table

/clusters
GET /clusters, 27
GET /clusters/(uuid:id), 26
POST /clusters, 25
DELETE /clusters/(uuid:id), 28

33

Cue Specs, Release

34 HTTP Routing Table

Index

C
cue

deploy, 7, 23

D
deploy

cue, 7, 23

35

	What is Cue?
	Why Cue?
	Getting Started
	Development Environment with Vagrant

	Getting Involved
	#openstack-cue
	Weekly meetings
	Contributing
	Coding Standards

	Installation Guide
	Installing Cue on Ubuntu
	Recommended Deployment
	Dashboard

	Configuration Options
	[DEFAULT]
	[database]
	[api]
	[taskflow]
	[openstack]
	[keystone_authtoken]

	Developer Guide
	Cue Dev Guide - Overview
	DevStack
	Development Environment with Vagrant

	REST API Documentation
	V1 API

	Indices and tables
	HTTP Routing Table

